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Abstract
We calculate the Hartree–Fock energy of a density-wave state in a spin-polarized
two-dimensional electron system with short-range repulsive interactions.
We find that the ground state is always either normal (nonmagnetic) or
ferromagnetic. However, the energy of a density-wave state approaches the
energy of the ferromagnetic ground state by a factor proportional to (1 − ζ 2)

(ζ is the polarization of the electron gas). Based on this result, we comment
on the possible existence of a density-wave ground state when a more realistic
interaction that includes electron correlations is considered.

The possible existence of a nonuniform ground state for a two-dimensional (2D) electron
system in the presence of a magnetic field has been recently proposed in explaining the results
of different experiments. Several examples of such puzzling data are the unidirectional charge-
density-wave states that appear in partially filled Landau levels [1, 2], the incompressible,
inhomogeneous insulating phase in p-GaAs/AlGaAs heterostructures displaying metal–
insulator transition [3, 4], and the unusual magneto-optical properties of the ferromagnetic
phase of p-type Cd1−x Mnx Te quantum wells [5].

The idea of a nonuniform ground state in a paramagnetic 2D electron system had surfaced
before. Prior to the discovery of the quantum Hall effect, it was argued that in 2D GaAs-type
structures the ground state was a charge-density wave [6]. More recent experimental [1, 2]
and theoretical [7, 8] results point, indeed, to the existence of charge-density-wave states in
partially filled higher Landau levels on account of the quasi-one-dimensional electron motion.

In the case of an unpolarized electron gas recent numerical calculations [9] show that as
the density is lowered the electron gas first undergoes a ferromagnetic transition followed by
Wigner crystallization. However, a study of point defects in the 2D Wigner crystal suggests
that the quantum melting could be continuous rather than first order [10], leaving open the
possibility of inhomogeneous intermediate phases.

In this work we analyse the possible formation of density waves in an interacting 2D
electron system that exhibits a very large Zeeman splitting. This situation occurs in II–VI
dilute-magnetic semiconductor structures where the effective Landé factor is up to thousands
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of times the band value. This is exactly opposite to the case in GaAs, where the cyclotron
energy is dominant1. Within the Hartree–Fock (HF) approximation, we estimate the energy
of a density-wave state for a delta-function repulsive interaction, the most unfavourable
situation for the development of a density-wave instability in an isotropic system. Under
these circumstances, obtaining a result that points toward a density instability bolsters the
idea of finding a nonuniform ground state in a spin-polarized electron system when higher
many-body corrections are incorporated within the Coulomb interaction. Such an assumption
seems to be supported by quantum Monte Carlo calculations that show an enlargement of the
exchange–correlation hole in polarized systems [11, 12], suggesting a propensity for density
instabilities. Whether or not the instability develops before the Wigner crystallization and its
dependence on the degree of polarization has not been studied yet.

It is well known that in three dimensions, within the HF approximation and for an
unscreened Coulomb interaction, the paramagnetic state is unstable with respect to the
formation of a spin density wave with wavevector near 2kF [13]. However, for a short-range
potential the stable HF solution is always either the normal nonmagnetic state or the uniform
ferromagnetic state [14]. We find that this result also holds in the 2D polarized system. In
this case, however, the difference in energy between a density-wave state with momentum q,
E(q)/N , and the ferromagnetic state, E(q = 0)/N , is reduced by a factor proportional to
(1 − ζ 2), where ζ = (n↑ − n↓)/n is the polarization of the electron gas,

E(q) − E(q = 0)

N
= q2 1 − ζ 2

4
. (1)

If the background charge is allowed to relax, as in the deformable jellium model, our result
applies to both spin- and charge-density waves [15].

Since the effective electronic interaction in real systems is somewhere in between the short-
range delta-function and the unscreened Coulomb potential our result suggests the possibility
of an inhomogeneous density-wave ground state in highly polarized two-dimensional electron
systems. If this inhomogeneous state exists it will be most probably a charge-density wave,
since electronic correlations in real systems favour charge-density over spin-density wave
instabilities [15]. Below we present the details of our analysis.

A density wave develops when the correlation function between an electron with
momentum k and spin σ and another electron with momentum k + q and spin σ ′, 〈ψ†

kσψk+qσ ′ 〉
becomes finite. When σ = σ ′, a charge-density wave is formed, while σ �= σ ′ corresponds
to a spin-density wave [15]. The interacting electron system Hamiltonian is diagonalized by a
canonical transformation that introduces a new set of operators:

ψ lower
k = cos (θk/2)ψk− q

2 σ + sin (θk/2)ψk+ q
2 σ ′ (2)

ψ
upper
k = −sin(θk/2)ψk− q

2 σ + cos (θk/2)ψk+ q
2 σ ′ , (3)

where θk is the coupling parameter and ψ lower
k (ψ

upper
k ) refers to the new lower (upper) band

excitations.
The Hartree–Fock ground state energy is a function of q and the parameters θk [14]. For

a system with N electrons, volume V and polarization ζ the total ground state energy is

E(q) = 1

2m

∑
k

[
k2 +

q2

4
− (k · q) cos θk

]
− H

2

[∑
k

cos θk − Nζ

]

− 1

2V

∑
kk′

v(k − k′) cos2[(θk − θk′)/2] (4)

1 For example, in GaAs the ratio of the cyclotron frequency to the Zeeman splitting is around 14, while the same
ratio is close to 1/20 in Zn1−x Cdx Se.
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where the first term is the kinetic energy, the second is the effective Zeeman energy2, needed
to fulfil the constraint of constant polarization, and the last one the Coulomb and exchange
energies.

For a delta-function interaction with strength v(k − k′) = v0 the total ground state energy
in atomic units3 becomes

E(q) =
∑

k

[
k2 +

q2

4
− (k · q) cos θk

]
− H

2

[∑
k

cos θk − Nζ

]

− v0

4V


(∑

k

cos θk

)2

+

(∑
k

sin θk

)2

− N 2


 . (5)

E(q) reaches a minimum with respect to θk when

tan θk = κ(v0, ζ )

2k · q + H ′(v0, ζ )
and κ(v0, ζ ) = v0

V

∑
k

sin θk (6)

where n = N/V , ζ = 1
N

∑
k cos θk and H ′ = H + v0ζn.

The quasi-particle energy in the ground state when only the lower band is occupied is
given by

εlower
k = k2 +

q2

4
+

nv0

2
− 1

2

√
[2k · q + H ′(v0, ζ )]2 + κ2(v0, ζ ). (7)

The solution for q′ = λq, v′
0 = v0/λ, V ′ = V/λ3 is homologous to that for q, v0, V , and

results in κ ′ = λ2κ and H ′ = λ2 H . From a numerical point of view, a simple way to minimize
the total energy is to take κ(v0, ζ ) = 1 and, for a fixed value of the parameter H ′, select the
maximum occupied energy in the lower band. Then, n, ζ, v0 and E(q) are computed for these
values by using equations (5) and (6).

Figure 1 displays our results for the normalized energy per particle of the density-wave
state, E(q)/(N EF), as a function of normalized momentum, q/kF, for ζ = 0.5 and several
values of the effective potential strength, veff = nv0

EF
= v0

2π
. The energy is measured with

respect to the energy of the normal paramagnetic state with the same density and polarization,
EPARA

N EF
= 1

2 (1 + ζ 2) + veff
4 (1 − ζ 2). For values of veff > 2 there is a range of momenta where

the density-wave states are lower in energy than the nonmagnetic state. However, the absolute
minimum is always at q = 0, the ferromagnetic state. The range of momenta where the density-
wave states are stable increases with the strength of the interaction, while their energies are
reduced.

Figure 2 shows the normalized energy for veff = 2.15 and three values of the polarization,
ζ = 0, 0.5, 0.9. The range of momenta where the density-wave state is lower in energy is the
same for all values of polarization. However, the energies increase with polarization.

By scaling the energies and momenta we find that all our numerical results overlap on a
single curve. Figure 3 displays our results for the ratio of the energy per particle relative to the
energy of the paramagnetic state	ε(q) = (E(q)−EPARA)/(N EF) to εscl = (veff−2)(1−ζ 2)/4
as a function of the scaled momentum q̃ = q

kF
√

veff−2
. We have studied a full range of values

of v0 and ζ . All the data are in excellent agreement with the simple scaling relation

	ε(q)

εscl
= q̃2 − 1. (8)

2 The spin magnetization is written as M = Nζ
2 = 1

2

∑
k cos θk.

3 k and q are in units of inverse Bohr radius (a−1
0 ) and the energy in Rydbergs.
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Figure 1. Normalized Hartree–Fock energy of the density-wave state, (E(q) − EPARA)/(N EF)

versus its normalized momentum, q/kF, for ζ = 0.5 and different values of the effective potential
strength, veff , as indicated in the legend.
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Figure 2. Normalized Hartree–Fock energy of the density-wave state, (E(q) − EPARA)/(N EF),
versus its normalized momentum, q/kF, for an effective interaction strength of veff = 2.15 and
ζ = 0 (stars), ζ = 0.5 (circles) and ζ = 0.9 (squares).

Therefore, the HF energy of a two-dimensional density wave (equation (5)) is a quadratic
function of the wavevector for any value of the polarization and strength interaction. The
difference in energy between the ferromagnetic ground state and the density-wave states
decreases by a factor proportional to (1−ζ 2 ). Since a short-range repulsive potential is the most
unfavourable situation for the development of density instabilities, it is conceivable that upon
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Figure 3. Scaled Hartree–Fock energy per particle of the density-wave state, 	ε(q)/εscl, as a
function of the scaled momentum, q̃ = q/(kF

√
veff − 2). Circles correspond to different values

of veff (between 2 and 8) and polarization ζ = 0, 0.5 and 0.9. The solid line corresponds to the
scaling relation equation (8).

the inclusion of higher-order many-body corrections to the electron interaction the ground
state might be a density-wave state in some range of densities and spin polarizations. The
self-consistent nature of the density-wave equation makes the incorporation of higher-order,
many-body effects a nontrivial task. In a different approach, one can search for signs of ground
state density instabilities by studying the poles of the magnetic and electric susceptibilities of
the system, the many-body effects being included in the latter as local field corrections. The
results of this analysis will be reported elsewhere [16].

In conclusion, we have found that, independent of the polarization, for veff > 2 and
wavevector q < kF

√
veff − 2 the density-wave ground state is lower in energy than the

paramagnetic state. In all cases, the absolute minimum is realized at q = 0 in the ferromagnetic
state. However, the difference in energy between a density-wave state with wavevector q and
the ferromagnetic state is reduced by a factor proportional to q2(1 − ζ 2). As a consequence,
in a highly polarized electron gas the density-wave states are very close in energy to the
ferromagnetic instability and many-body corrections can make this energy difference negative,
leading to nonuniform ground states.
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Bardyszewski W, Swiatek K, Sawicki M, Wróbel J and Dietl T 2000 Physica E 6 709
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